Data
Y =
Cheat
X1 =
Refund, X2 = Marital Status, X3 = Taxable Income
HMAP: model penyederhanaan dari metode bayes yang disebut Naïve Bayes. HMAP digunakan dalam machine learning sebagai metode untuk mendapatkan hipotesis untuk suatu keputusan.
1.
Nomor 1
· Data: X1 = No, X2
= Singel, X3 = 75 K (<80 K)
· Fakta
P(Y=Yes) = 3/10
P(Y=No) = 7/10
P(X1=No | Y=Yes) = 3/3
P(X1=No | Y=No) = 4/7
P(X2=Singel | Y=Yes) =
2/3
P(X2=Singel | Y=No) = 2/7
P(X3=75 K | Y=Yes) = 0/3
P(X3=75 K | Y=No) = 3/7
P(X1=No, X2=Singel,
X3=75 K | Y=Yes) =
{P(X1=No | Y=Yes) *
P(X2=Singel | Y=Yes) * P(X3=75 K | Y=Yes) * P(Y=Yes)}
P(X1=No, X2=Singel, X3=75 K | Y=Yes) = (3/3) * (2/3) * (0/3) * (3/10)
= 0
P(X1=No, X2=Singel,
X3=75 K | Y=No) =
{P(X1=No | Y=No) *
P(X2=Singel | Y=No) * P(X3=75 K | Y=No) * P(Y=No)}
P(X1=No, X2=Singel,
X3=75 K | Y=No) = (4/7) * (2/7) * (3/7) * (7/10)
=
0,489796
Sehingga
X1 = Refund = No
X2 = Marital Status =
Singel
X3 = Taxable Income = 75
K
Y = Cheat = No
2.
Nomor 2
· Data: X1 = Yes, X2
= Married, X3 = 50 K
(<80 K)
· Fakta
P(Y=Yes) = 3/10
P(Y=No) = 7/10
P(X1=Yes | Y=Yes) = 0/3
P(X1=Yes | Y=No) = 3/7
P(X2=Married | Y=Yes) = 0/3
P(X2=Married | Y=No) = 4/7
P(X3=50 K | Y=Yes) = 0/3
P(X3=50 K | Y=No) = 3/7
P(X1=Yes, X2=Married,
X3=50 K | Y=Yes) =
{ P(X1=Yes | Y=Yes) * P(X2=Married
| Y=Yes) * P(X3=50 K | Y=Yes) * P(Y=Yes)}
P(X1=Yes, X2=Married,
X3=50 K | Y=Yes) = (0/3) * (0/3)
* (0/3) * (3/10)
= 0
P(X1=Yes, X2=Married,
X3=50 K | Y=No) =
{ P(X1=Yes | Y=No) *
P(X2=Married | Y=No) * P(X3=50 K | Y=No) * P(Y=No)}
P(X1=Yes, X2=Married,
X3=50 K | Y=No) = (3/7) * (4/7)
* (3/7) * (7/10)
=
0,0734694
Sehingga
X1 = Refund = Yes
X2 = Marital Status = Married
X3 = Taxable Income = 50
K
Y = Cheat = No
3.
Nomor 3
· Data: X1 = No, X2
= Married, X3 = 150 K
(>80 K)
· Fakta
P(Y=Yes) = 3/10
P(Y=No) = 7/10
P(X1=No | Y=Yes) = 3/3
P(X1=No | Y=No) = 4/7
P(X2=Married | Y=Yes) =
0/3
P(X2=Married | Y=No) =
4/7
P(X3=150 K | Y=Yes) = 3/3
P(X3=150 K | Y=No) = 4/7
P(X1=No, X2=Married, X3=150
K | Y=Yes) =
{P(X1=No | Y=Yes) * P(X2=Married
| Y=Yes) * P(X3=150 K | Y=Yes) * P(Y=Yes)}
P(X1=No, X2=Married,
X3=150 K | Y=Yes) = (3/3) * (0/3)
* (3/3) * (3/10)
= 0
P(X1=No, X2=Married, X3=150
K | Y=No) =
{P(X1=No | Y=No) * P(X2=Married
| Y=No) * P(X3=150 K | Y=No) * P(Y=No)}
P(X1=No, X2=Married,
X3=150 K | Y=No) = (4/7) * (4/7)
* (4/7) * (7/10)
= 0,130612
Sehingga
X1 = Refund = No
X2 = Marital Status = Married
X3 = Taxable Income = 150
K
Y = Cheat = No
4.
Nomor 4
· Data: X1 = Yes, X2
= Divorced, X3 = 90 K
(>80 K)
· Fakta
P(Y=Yes) = 3/10
P(Y=No) = 7/10
P(X1=Yes | Y=Yes) = 0/3
P(X1=Yes | Y=No) = 3/7
P(X2=Divorced | Y=Yes) =
1/3
P(X2=Divorced | Y=No) = 1/7
P(X3=90 K | Y=Yes) = 3/3
P(X3=90 K | Y=No) = 4/7
P(X1=Yes, X2Divorced,
X3=90 K | Y=Yes) =
{ P(X1=Yes | Y=Yes) * P(X2=Divorced
| Y=Yes)*P(X3=90 K | Y=Yes) * P(Y=Yes)}
P(X1=Yes, X2Divorced,
X3=90 K | Y=Yes) = (0/3) * (1/3) * (3/3) * (3/10)
=
0
P(X1=Yes, X2Divorced,
X3=90 K | No) =
{ P(X1=Yes | Y=No) *
P(X2=Divorced | Y=No) * P(X3=90 K | Y=No) * P(Y=No)}
P(X1=Yes, X2=Married,
X3=50 K | Y=No) = (3/7) * (1/7)
* (4/7) * (7/10)
=
0,0244896
Sehingga
X1 = Refund = Yes
X2 = Marital Status =
Divorced
X3 = Taxable Income = 90
K
Y = Cheat = No
5.
Nomor 5
· Data: X1 = No, X2
= Singel, X3 = 40 K (<80 K)
· Fakta
P(Y=Yes) = 3/10
P(Y=No) = 7/10
P(X1=No | Y=Yes) = 3/3
P(X1=No | Y=No) = 4/7
P(X2=Singel | Y=Yes) =
2/3
P(X2=Singel | Y=No) =
2/7
P(X3=40 K | Y=Yes) = 0/3
P(X3=40 K | Y=No) = 3/7
P(X1=No, X2=Singel, X3=40
K | Y=Yes) =
{P(X1=No | Y=Yes) *
P(X2=Singel | Y=Yes) * P(X3=40 K | Y=Yes) * P(Y=Yes)}
P(X1=No, X2=Singel,
X3=75 K | Y=Yes) = (3/3) * (2/3) * (0/3)
* (3/10)
=
0
P(X1=No, X2=Singel, X3=40
K | Y=No) =
{P(X1=No | Y=No) *
P(X2=Singel | Y=No) * P(X3=40 K | Y=No) * P(Y=No)}
P(X1=No, X2=Singel,
X3=75 K | Y=No) = (4/7) * (2/7) * (3/7) * (7/10)
=
0,489796
Sehingga
X1 = Refund = No
X2 = Marital Status =
Singel
X3 = Taxable Income = 40
K
Y = Cheat = No
6.
Nomor 6
· Data: X1 = No, X2
= Married, X3 = 80 K (<80
K)
· Fakta
P(Y=Yes) = 3/10
P(Y=No) = 7/10
P(X1=No | Y=Yes) = 3/3
P(X1=No | Y=No) = 4/7
P(X2=Married | Y=Yes) =
0/3
P(X2=Married | Y=No) =
4/7
P(X3=80 K | Y=Yes) = 0/3
P(X3=80 K | Y=No) = 3/7
P(X1=No, X2=Married,
X3=80 K | Y=Yes) =
{P(X1=No | Y=Yes) *
P(X2=Married | Y=Yes) * P(X3=80 K | Y=Yes) * P(Y=Yes)}
P(X1=No, X2=Married, X3=80
K | Y=Yes) = (3/3) * (0/3) * (0/3) * (3/10)
=
0
P(X1=No, X2=Married, X3=80
K | Y=No) =
{P(X1=No | Y=No) *
P(X2=Married | Y=No) * P(X3=80 K | Y=No)
* P(Y=No)}
P(X1=No, X2=Married, X3=80
K | Y=No) =
(4/7) * (4/7) * (3/7) *
(7/10)
=
0,0978592
Sehingga
X1 = Refund = No
X2 = Marital Status =
Married
X3 = Taxable Income = 80
K
Y = Cheat = No
· Data: X1 = No, X2
= Married, X3 = 80 K (>80
K)
· Fakta
P(Y=Yes) = 3/10
P(Y=No) = 7/10
P(X1=No | Y=Yes) = 3/3
P(X1=No | Y=No) = 4/7
P(X2=Married | Y=Yes) =
0/3
P(X2=Married | Y=No) =
4/7
P(X3=80 K | Y=Yes) = 3/3
P(X3=80 K | Y=No) = 4/7
P(X1=No, X2=Married,
X3=80 K | Y=Yes) =
{P(X1=No | Y=Yes) *
P(X2=Married | Y=Yes) * P(X3=80 K | Y=Yes) * P(Y=Yes)}
P(X1=No, X2=Married,
X3=80 K | Y=Yes) = (3/3) * (0/3)
* (3/3) * (3/10)
=
0
P(X1=No, X2=Married,
X3=80 K | Y=No) =
{P(X1=No | Y=No) *
P(X2=Married | Y=No) * P(X3=80 K | Y=No)
* P(Y=No)}
P(X1=No, X2=Married,
X3=80 K | Y=No) = (4/7) * (4/7) * (4/7) *
(7/10)
=
0,130612
Sehingga
X1 = Refund = No
X2 = Marital Status =
Married
X3 = Taxable Income = 80
K
Y = Cheat = No
Komentar
Posting Komentar